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Refutation of Godel Program with ZFC and Hilbert’s first continuum problem without ZFC

We assume the method and apparatus of Meth8/VEL4 with Tautology as the designated proof value, F
as contradiction, N as truthity (non-contingency), and C as falsity (contingency). The 16-valued truth
table is row-major and horizontal, or repeating fragments of 128-tables, sometimes with table counts,
for more variables. (See ersatz-systems.com.)

LET ~ Not,—; + Or, V,U,U,|; - NotOr; & And, A,N,™M,-,°,®; \ NotAnd, 1;
> Imply, greater than, —, =, P, >, D, >; < Not Imply, less than, €, <, C, ¥, ¥ «—, < ;
= Equivalent, =, :=, &, &, 4, = ~; (@ Not Equivalent, #, ® ;

% possibility, for one or some, 3, 3!, 0, M ; # necessity, for every or all, V¥, o, L ;
(z=z) T as tautology, T, ordinal 3 ; (z@z) F as contradiction, @, Null, L , zero ;
(%z>#z) N as non-contingency, A, ordinal 1 ; (%z<#z) C as contingency, V, ordinal 2 ;
~(y<x) (x<y),(xSy), (xEy), ~(x<y) (x2y); (A=B) (A~B).

Notes: for clarity, we usually distribute quantifiers onto each designated variable; and
for ordinal arithmetic, the result is implied.

From: Miiller, S.; Sargsyan, G. (2024). Godel’s program in set theory. arxiv.org/pdf/2412.07325
sandra.mueller@tuwien.ac.at

ABSTRACT. Godel proved in the 1930s in his famous Incompleteness Theo-
rems that not all statements in mathematics can be proven or disproven from
the accepted ZFC axioms. A few years later he showed the celebrated result
that Cantor’s Continnum Hypothesis is consistent. Afterwards, Godel raised
the guestion whether, despite the fact that there is no reasonable axiomatic
framework for all mathematical statements, natural statements, such as Can-
tor’'s Continuum Hypothesis, can be decided via extending ZFC by large car-
dinal axioms. While this question has been answered negatively, the problem
of finding good axioms that decide natural mathematical statements remains
open. There is a compelling candidate for an axiom that could solve Godel’s
problem: V = Ultimate — L. In addition, due to recent results the Sealing sce-
nario has gained a lot of attention. We describe these candidates as well as
their impact and relationship.

Example: Cantor’s Continuum Problem. Arguably the most famous state-
ment that is known to be independent from ZFC is Cantor’s Continuum Problem.
It was formulated by Cantor in 1878 and appeared as the first item on Hilbert’s list
of problems announced at the International Congress of Mathematicians in Paris in
1900. Informally, it can be phrased as the question how many real numbers there
are. Or, a bit more formally, as the following question: Is there a set A of size
strictly between the size of the set of natural numbers |N| and the size of the set of
real numbers |R|? Le., is there a set A such that

IN| < |A] < [R]?

[continued on next page]



We define the sets as absolute values of the usual way.
LET p,q,r: [N, [A], [R].

Ordinal one is defined as (%s>#s), and zero is defined as (s@s).
One as proof (s=s) can also be described as zero for not contradiction ~(s=s) or (s@s).

The numbers for p, q, r are restricted where

Natural numbers are integers greater than zero, that is not less than one, and the other sets are
numbers greater than zero, that is not equal to zero. This complies with zero as a marker. (1.1)

(~(p<(%s>#s))&(q>(s@s)))&(r>(s@s)) ; TNFF FFFF TNFF FFFF (1.2)
(~(p<(s=9))&(q>(s@3s))&(r>(s@s)) ; TTFF FFFF TTFF FFFF (1.3)
All numbers are also not equivalent to each other for unique sets. (2.1)
~((P=a)+(p=1)+(q=1)) = (s=9) ; FFFF FFFF FFFF FFFF (2.2)

The antecedent is formed with the range description of Eq. 1.2 or of 1.3 to imply the non-equivalence
description of 2.2 as: (3.1,3.2)

((~(p<(Vos>#5)) &(q>(s@s)))&(1>(s@s))) > ~((p=q)+(p=1))+(q=1)) ;

FCTT FFFF FCTT FFFF (3.3)

(~(p<(s=9))&(q>(s@9))) &(1>(s@s))) > ~(((p=q)*+(p=1))*+(q=T)) ;

FFTT TTTT FFTT TTTT 3.4)

The consequent is formed in dividing p, q, r by p to indicate that the natural numbers as p\p imply
ordinal one or proof one, also to mean the least value in the relations is an integer identity of one.

(4.1,4.2)
(P\P)>(%s>#5))<((q'p)<(1'p)) ; NINT NENT NINT NENT (4.3)
((p\p)>(s=9))<((q\p)<(r\p)) ; TTTT TFTT TTTT TFTT 4.4)
The arguments for the two renditions of one are 3.3 implies 4.3 or 3.4 implies 4.3 (5.1,5.2)
(~(p<(Yos>#3))&(q>(s@s)))&(r>(s@s))) > ~(((p=q)H(p=1))+(q=T))) >
(P'P)>(%s>#s)<((@p)<('\p))) ;  TINT NENT TTNT NENT (5.3)
(A(p<(s=8))&(q>(s@s))) & (r>(s@s))) > ~(((p=q)H(p=1))H(q=T))) >
(((p\p)>(s=9))<((q\p)<(1\p))) ; TTTT TETT TTTT TFTT (5.4)

Remarks: Eqgs. 5.3 and 5.4 are both nof tautologous to refute Cantor’s continuum (1878) as Hilbert’s
first problem (1900). For one as (s=s) in 5.4, the truth table is closer to tautology, but still no cigar.

This exercise in bivalent logic refutes Godel’s program with ZFC and consistency of the continuum
hypothesis without ZFC: incompleteness theorems also fail due to ZFC’s ironic contradiction. This
resets the foundations of mathematics to Boole’s inadvertent first discovery of modal logic (1850).
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